905-525-9140 ext. 22280
John received his BSc in Biological Chemistry in 2007 from the University of Guelph. He then completed his PhD in Biochemistry at the University of Toronto and The Hospital for Sick Children. From 2013 to 2016 John was a postdoctoral fellow in the Department of Microbiology at the University of Washington in Seattle before establishing his lab in the Department of Biochemistry & Biomedical Sciences at McMaster in 2017.
Research in the Whitney Lab seeks to understand the molecular mechanisms that underlie microbe-microbe interactions.
Bacterial Competition Mediated by the Type VI Secretion System - The bacterial type VI secretion system is a recently identified protein translocation pathway used by Gram-negative bacteria to deliver toxins to neighbouring bacteria in a cell contact-dependent manner. The Whitney Lab is interested in understanding how these antibacterial proteins are transported from one cell to another and how they exert toxicity once delivered to a target cell.
Type VII Secretion-dependent Interbacterial Antagonism - In contrast to their Gram-negative counterparts, the pathways involved in interbacterial antagonism between Gram-positive bacteria has long remained elusive. In recent work, the Whitney Lab and others have found that the type VII secretion system exports antibacterial toxins that mediate interbacterial competition. Elucidating the mode of action of these toxins will allow for the identification of new vulnerabilities in Gram-positive cells that can be exploited for the development of new antibiotics.
Exopolysaccharide Secretion and Interbacterial Adhesion - Many species of bacteria exist in dense cellular aggregates held together by bacterially produced exopolysaccharides. In this form, bacteria are difficult to eradicate due in part to decreased efficacy of antibiotics. The Whitney Lab is interested in determining how bacterial exopolysaccharides are synthesized and exported from the cell.
905-525-9140 ext. 22280
John received his BSc in Biological Chemistry in 2007 from the University of Guelph. He then completed his PhD in Biochemistry at the University of Toronto and The Hospital for Sick Children. From 2013 to 2016 John was a postdoctoral fellow in the Department of Microbiology at the University of Washington in Seattle before establishing his lab in the Department of Biochemistry & Biomedical Sciences at McMaster in 2017.
Research in the Whitney Lab seeks to understand the molecular mechanisms that underlie microbe-microbe interactions.
Bacterial Competition Mediated by the Type VI Secretion System - The bacterial type VI secretion system is a recently identified protein translocation pathway used by Gram-negative bacteria to deliver toxins to neighbouring bacteria in a cell contact-dependent manner. The Whitney Lab is interested in understanding how these antibacterial proteins are transported from one cell to another and how they exert toxicity once delivered to a target cell.
Type VII Secretion-dependent Interbacterial Antagonism - In contrast to their Gram-negative counterparts, the pathways involved in interbacterial antagonism between Gram-positive bacteria has long remained elusive. In recent work, the Whitney Lab and others have found that the type VII secretion system exports antibacterial toxins that mediate interbacterial competition. Elucidating the mode of action of these toxins will allow for the identification of new vulnerabilities in Gram-positive cells that can be exploited for the development of new antibiotics.
Exopolysaccharide Secretion and Interbacterial Adhesion - Many species of bacteria exist in dense cellular aggregates held together by bacterially produced exopolysaccharides. In this form, bacteria are difficult to eradicate due in part to decreased efficacy of antibiotics. The Whitney Lab is interested in determining how bacterial exopolysaccharides are synthesized and exported from the cell.
905-525-9140 ext. 22280
John received his BSc in Biological Chemistry in 2007 from the University of Guelph. He then completed his PhD in Biochemistry at the University of Toronto and The Hospital for Sick Children. From 2013 to 2016 John was a postdoctoral fellow in the Department of Microbiology at the University of Washington in Seattle before establishing his lab in the Department of Biochemistry & Biomedical Sciences at McMaster in 2017.
Research in the Whitney Lab seeks to understand the molecular mechanisms that underlie microbe-microbe interactions.
Bacterial Competition Mediated by the Type VI Secretion System - The bacterial type VI secretion system is a recently identified protein translocation pathway used by Gram-negative bacteria to deliver toxins to neighbouring bacteria in a cell contact-dependent manner. The Whitney Lab is interested in understanding how these antibacterial proteins are transported from one cell to another and how they exert toxicity once delivered to a target cell.
Type VII Secretion-dependent Interbacterial Antagonism - In contrast to their Gram-negative counterparts, the pathways involved in interbacterial antagonism between Gram-positive bacteria has long remained elusive. In recent work, the Whitney Lab and others have found that the type VII secretion system exports antibacterial toxins that mediate interbacterial competition. Elucidating the mode of action of these toxins will allow for the identification of new vulnerabilities in Gram-positive cells that can be exploited for the development of new antibiotics.
Exopolysaccharide Secretion and Interbacterial Adhesion - Many species of bacteria exist in dense cellular aggregates held together by bacterially produced exopolysaccharides. In this form, bacteria are difficult to eradicate due in part to decreased efficacy of antibiotics. The Whitney Lab is interested in determining how bacterial exopolysaccharides are synthesized and exported from the cell.
905-525-9140 ext. 22280
John received his BSc in Biological Chemistry in 2007 from the University of Guelph. He then completed his PhD in Biochemistry at the University of Toronto and The Hospital for Sick Children. From 2013 to 2016 John was a postdoctoral fellow in the Department of Microbiology at the University of Washington in Seattle before establishing his lab in the Department of Biochemistry & Biomedical Sciences at McMaster in 2017.
Research in the Whitney Lab seeks to understand the molecular mechanisms that underlie microbe-microbe interactions.
Bacterial Competition Mediated by the Type VI Secretion System - The bacterial type VI secretion system is a recently identified protein translocation pathway used by Gram-negative bacteria to deliver toxins to neighbouring bacteria in a cell contact-dependent manner. The Whitney Lab is interested in understanding how these antibacterial proteins are transported from one cell to another and how they exert toxicity once delivered to a target cell.
Type VII Secretion-dependent Interbacterial Antagonism - In contrast to their Gram-negative counterparts, the pathways involved in interbacterial antagonism between Gram-positive bacteria has long remained elusive. In recent work, the Whitney Lab and others have found that the type VII secretion system exports antibacterial toxins that mediate interbacterial competition. Elucidating the mode of action of these toxins will allow for the identification of new vulnerabilities in Gram-positive cells that can be exploited for the development of new antibiotics.
Exopolysaccharide Secretion and Interbacterial Adhesion - Many species of bacteria exist in dense cellular aggregates held together by bacterially produced exopolysaccharides. In this form, bacteria are difficult to eradicate due in part to decreased efficacy of antibiotics. The Whitney Lab is interested in determining how bacterial exopolysaccharides are synthesized and exported from the cell.
McMaster Children's Hospital
1280 Main St W
HSC - 4N59
Hamilton, Ontario, Canada
L8S 4K1
Monday to Friday
8:30am to 4:30pm
Phone: 905-525-9140 ext. 22065
The Faculty of Health Sciences is committed to providing a website that is accessible to the widest possible audience. If there is an accessibility issue with this website, please contact us at fhsaoda@mcmaster.ca.